Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

Tribenzyl $\{\eta^5$ -[2-(p-tolyl)prop-2-yl]cyclopentadienyl $\}$ zirconium

Jörg Saßmannshausen et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

 \bigcirc 2000 International Union of Crystallography • Printed in Great Britain – all rights reserved

electronic papers

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

Tribenzyl{ η^5 -[2-(p-tolyl)prop-2-yl]-cyclopentadienyl}zirconium

Jörg Saßmannshausen, Jörg Rust and Richard Goddard*

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr. Germany

Correspondence e-mail: goddard@mpi-muelheim.mpg.de

Received 17 April 2000 Accepted 20 April 2000

Data validation number: IUC0000121

The title compound, $[Zr(C_7H_7)_3(C_{15}H_{17})]$, (I), crystallizes from light petroleum with two independent molecules in the asymmetric unit. Whereas in the parent molecule, $Zr(\eta^5-C_5H_5)(CH_2Ph)_3$, all three $Zr-CH_2Ph$ angles are equal, in (I), they differ significantly. In spite of their different environments, both independent molecules in (I) exhibit a small, an expected, and a large $Zr-CH_2Ph$ angle. The angles are similar to those of the closely related tribenzyl[η^5 -(benzyldimethylsilyl)cyclopentadienyl]zirconium complex. The smallest $Zr-CH_2Ph$ angle and the consequently relatively short $Zr\cdots C_{ipso}$ distance are indicative of η^2 -bonding of the benzyl group.

Comment

The title compound, (I), crystallizes from light petroleum with two independent molecules in the asymmetric unit. Whereas in the parent molecule, $Zr(\eta^5-C_5H_5)(CH_2Ph)_3$ (Scholz et al., 1993), all three Zr – CH₂Ph angles are equal to 94.5 (5) $^{\circ}$, in (I), they differ significantly. In spite of their different environments, both independent molecules in (I) exhibit a small $[86.4 (2) \text{ and } 85.5 (2)^{\circ}]$, an expected $[103.9 (2) \text{ and } 103.1 (2)^{\circ}]$, and a large [119.9 (2) and 122.4 (2)°] Zr-CH₂Ph angle. The angles are similar to those of the closely related $[\eta^5$ -(benzyldimethylsilyl)cyclopentadienyl]tribenzylzirconium complex where comparable angles are 86.5 (10), 102.0 (13) and $122.4 (11)^{\circ}$ (Ciruelo et al., 1997). The smallest Zr-CH₂Ph angle and the consequently relatively short Zr-Cipso bond [2.643 (2) and 2.632 (2) Å] are indicative of η^2 -bonding of the benzyl group. The methylene H atoms in the benzylic groups were refined isotropically in order to ascertain whether any of them were agostic (Brookhart & Green, 1983). None of the Zr-C-H angles is significantly less than 90°, indicating that the Zr···Cipso interaction is favoured over an agostic interaction.

$$Z_{r(CH_{2}Ph)_{3}}$$

Experimental

The title compound was prepared according to the method described by Saßmannshausen (2000). Crystals suitable for X-ray diffraction were grown by slow cooling a light petroleum solution of the compound to 233 K.

Crystal data

$[Zr(C_7H_7)_3(C_{15}H_{17})]$	$D_x = 1.313 \text{ Mg m}^{-3}$
$M_r = 561.88$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 14107
a = 25.0892 (18) Å	reflections
b = 11.0572 (8) Å	$\theta = 1.86 – 28.00^{\circ}$
c = 22.0033 (15) Å	$\mu = 0.409 \text{ mm}^{-1}$
	T = 100 K
$V = 5683.4 (7) \text{ Å}^3$	Prism, yellow
Z = 8	$0.53 \times 0.42 \times 0.11 \text{ mm}$

Data collection

Siemens SMART diffractometer	9028 reflections with $I > 2\sigma(I)$
CCD ω scans	$R_{\rm int} = 0.128$
Absorption correction: ψ scan	$\theta_{\rm max} = 28^{\circ}$
(XPREP; Siemens, 1995)	$h = -21 \rightarrow 33$
$T_{\min} = 0.844, T_{\max} = 0.956$	$k = -14 \rightarrow 14$
49 130 measured reflections	$l = -28 \rightarrow 26$
13 434 independent reflections	Intensity decay: none

Refinement

Refinement on F^2	H atoms treated by a mixture of
Kennement on I	II atoms treated by a mixture of
R(F) = 0.044	independent and constrained
$wR(F^2) = 0.100$	refinement
S = 1.016	$w = 1/[\sigma^2(F_o^2) + (0.0403P)^2]$
13 434 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0403P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
715 parameters	$(\Delta/\sigma)_{\text{max}} = 0.001$
-	$\Delta \rho_{\text{max}} = 0.77 \text{ e Å}^{-3}$
	$\Delta \rho_{\min} = -1.15 \text{ e Å}^{-3}$

Table 1Selected geometric parameters (Å, °).

C24'-Zr1'	2.632 (2)	C31-Zr1	2.643 (2)
C17-C16-Zr1	119.93 (16)	C24'-C23'-Zr1' C31-C30-Zr1 C31'-C30'-Zr1'	85.48 (16)
C17'-C16'-Zr1'	103.08 (16)		86.43 (16)
C24-C23-Zr1	103.91 (17)		122.36 (17)

The methylene H atoms of the benzylic groups were refined isotropically and the remaining H atoms were included in the refinement using a riding model. The maximum residual electron density is 1.08 Å from Zr1.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997).

electronic papers

References

Brookhart, M. & Green, M. L. H. (1983). *J. Organomet. Chem.* **250**, 395–408. Ciruelo, G., Cuenca, T., Gómez, R., Gómez-Sal, P., Martín, A. Rodríguez, G. & Royo, P. (1997). *J. Organomet. Chem.* **547**, 287–296. Saßmannshausen, J. (2000). *Organometallics*, **19**, 482–489.

Scholz, J., Rehbaum, F., Thiele, K.-H., Goddard, R., Betz, P. & Krüger, C. (1993). J. Organomet. Chem. 443, 93–99.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1995). XPREP, SMART and SAINT. Versions 4.050. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.